
Dual-Method Security System

Sahil Patel (sahilsp2)

 Anna Miller (annam4)

Mustafa Jamal (mustafa6)

May 5, 2019

ECE 120 Honors Lab

Thursday 7-8 PM

Introduction

Security is a prevalent issue on college campuses. Consider dormitories, for example.
Often, students require I-cards and keyfobs to gain access and are constantly warned against
allowing “tag-alongs”. ​ ​Security precautions, however, when entering certain buildings and
boarding the bus can make the process inefficient. Time is wasted in physically presenting
I-cards when boarding the bus. One way to simplify security and ensure that only those with the
proper credentials can obtain access would be to create lock system that implements an RFID
scanner. The RFID scanner would only allow certain frequencies to pass through a gate.
Additionally, in the event that the person forgot his or her fob, the gate would also have a
password-based backup system. These systems could be installed at the entrance of buses and
before the doors of buildings. They would function much like the anti-theft systems in retail
stores by alerting staff members and security when someone tries to gain access without the
proper permission.

Design Concept
The proposed design concept consists of a keypad circuit, an RFID circuit, an Arduino

Mega and EEPROM, logic gates, and an indicator output. Figure 1 provides an image of the
design.

The first part of the design is the keypad circuit, which consists of a 4x3 matrix keypad, a
16x2 LCD, and the Arduino Mega. The purpose of this circuit is to enable the user to input
passwords. The keypad serves as the input and feeds data to the Arduino. The Arduino uses
code to interpret the values being entered. The LCD portion serves to facilitate the use and
troubleshooting of the project. The Arduino outputs to the LCD and display both the numbers on
the keypad and whether or not the entry attempt was successful.

Alternatively, there is the RFID circuit. This circuit simply consists of a scanner that
communicates with the Arduino Mega. Along with the scanner are various tags. The tags are
detected by the scanner and compared with existing information to determine if the user should
be allowed access.

The Arduino Mega is used to relay information between different portions of the circuit. It
contains the libraries and code necessary to read the input from the keypad and the RFID
scanner, output messages to the LCD, and receive information from the logic gates that are
used to compare data in the circuit. Additionally, the Arduino includes an EEPROM, a
component that is used to store the acceptable passwords and IDs.

Possibly the most important part of the design is the logic element. This portion of the
circuit is used to compare the actual input against the acceptable input. This part of the design
consists of a CMOS D-type flip-flop, an XOR chip, and a NAND chip. The input information is
compared to the stored information to determine if the user should be allowed entry.

Finally, the circuit ends with an indicator. This output is simply tells the user whether or
not the attempt was successful. Initially, the LCD reads “Enter Password.” If the proper
password or RFID tag is used, the LCD displays “Access Granted. If unsuccessful, the display
reads “Access Denied.” Additionally, when the stored password is changed the display indicates
this with the message “Password Changed.”

Figure 1:​ LCD displays “Access Granted” after the correct password is entered.

Analysis of Components

Keypad and LCD Circuit

The matrix keypad works by setting each key to a specific row and column. For example,
if “3” is pressed, column 2 and row 0, which are pins 3 and 7 respectively, will read as HIGH. By
registering the combination of the row and column, the Arduino will determine the number or
character that has been pressed.

Figure 2: ​The matrix keypad designates each of the 7 pins as a specific row or column.

RFID Scanner

Figure 3: ​The MFRC522 pinout.

The MFRC522 RFID reader uses Serial Peripheral Interface (SPI) to communicate with
the arduino. It has 4 main pins, shown in blue above. The SS (Slave Select) pin selects which
component is being communicated to. SPI supports one master and any amount slaves. In this
project, there was only one slave: the MFRC522. The SCK pin is the clock on which the two
communicate. MOSI (Master Out Slave In) is the information channel for the arduino to the

MFRC522, and the MISO (Master In Slave Out) is goes the opposite way. The SPI
communication is handled by an arduino library, detailed in the ​Arduino Code​ section below.

EEPROM

The EEPROM is used to store the correct passwords/card IDs and the currently inputted
passwords/card IDs. In the Arduino EEPROM library, each address refers to a byte of memory,
which is enough to store one ASCII character. For compatibility with non-numerical keypads and
the LCD, passwords are stored as characters in sequential addresses in the EEPROM. The
card IDs are also stored as sequential bytes, but not as ASCII characters, as the ID is not
printed to the LCD screen. Most RFID cards have a 4-byte ID, and our code is configured to
process 4-character passwords as well, although both these numbers can easily be changed.

Arduino Code

The code performs three core tasks: 1) interpret keypad input, 2) control LCD output,
and 3) interpret RFID input. To complete the first task, the implementation of the Arduino
Keypad library was required. In the loop function, character is being pressed (if any) is checked
and stored to be used in task 2. The # and * keys have special functions, acting as the enter
and change password buttons respectively.

LCD output is implemented using the Arduino LiquidCrystal library. The first row of the
LCD shows the previously entered characters, and the second row shows the current status of
operation (waiting for user to enter the password, accepting it, or denying it).

The third task uses a third-party RFID library (cited below). This library only alerts our
code of a card upon its entrance within range (it does not continuously output the card ID). The
loop function also repeatedly checks to see if a new card has been read. If so, it proceeds as if
the # key had been pressed, using the comparator circuit to determine if access should or
should not be granted.

Figure 4:​ LCD prompts user and displays keypad input.

Design Description

The original design concept of the proposed solution is depicted in Figure 6. It differs
from the final stages, where an LCD screen is used for output rather than a buzzer and LED.
This block diagram shows that the keypad circuit receives input from the user and feeds that to

the EEPROM. Alternatively, the RFID scanner picks up the signal from the tag and send its ID to
the EEPROM. The Arduino then sends the bits from memory to a comparison circuit, and based
on the result of the comparison, the LCD displays the relevant message.

Figure 5: ​Basic structure of the circuit.

Bitwise Comparison

The passwords are 4 characters long, requiring 32 bits each. With this in mind, a parallel
comparison circuit would require more pins on the arduino than possible. To work around this, a
serial comparison circuit was built.

Figure 6: ​Full Comparison Circuit Diagram.

The XNOR gate is the bulk of the comparison, outputting HIGH when both incoming bits
are the same. All labeled nodes in Figure 6 are outputs from the Arduino with the exception of
OUT, which is an input to the Arduino. The D-type Flip Flop allows for every bit to be compared
on the same circuit, serially. It stores a bit which is HIGH if all bits so far have been the same
and LOW if any one bit is ever not the same. This is accomplished with the AND gate,
compounding the stored value with itself, assuring that a HIGH output is unstable, and a LOW
signal is stable. The flip flop is reset before each comparison of passwords, but not between
each bit.

The XNOR and AND gates on this circuit are actually built from XOR and NAND gates,
as those were the gates at our disposal.

Troubleshooting
While implementing the design, there were a couple of issues that required special

attention. Certain elements of the circuit and functionalities were not compatible with the original
design. In these cases, a new design had to be created.

One such change was made regarding the original design for the logical element of the
project, which depicted a parallel bitwise comparison of the passwords. However, even the
Arduino Mega did not have enough pins to support the parallel comparison and the RFID
scanner. As a result, a second comparison circuit was designed to operate serially. Although a
serial design is typically slower than a parallel design, for this project, the timing difference is so
small it is negligible. Additionally, the serial design required less area, saving breadboard space,
wires, and chips that would have been used in parallel.

Another change in the original design was in the output of the circuit. Originally, a buzzer
and LED were planned to work along with the output on the LCD to either grant or deny access
when a password is entered. After implementing the serial comparison design, however,
because of the timing aspect of the flip-flop and the need to finish other important functions of
the project, it was determined that the LED and buzzer were superfluous. Instead, the LCD
would simply display the appropriate message.

Conclusion
This project gave us practical experience with circuitry in general and the Arduino in

particular. We learned about the different functions of Arduino pins (whether they are digital or
analog I/O, power, or controls), we researched RFID technology and SPI communication to be
able to use them in our project, learned how to use basic Arduino libraries, and, most
impactfully, we gained first-hand experience with the benefits and detriments of serial and
parallel design.

Initially, we wanted to use a parallel design because it wouldn’t require any type of
memory or the generation of a clock signal. However, as we sought to expand our system to
work with larger passwords, it quickly became impossible to fit the size of the circuit in with the
Arduino because we ran out of I/O pins. By switching to a serial design we drastically reduced
the size of our circuit, and the time it takes to complete a comparison increased, but not by a
noticeable amount.

In the end, we were able to successfully complete almost all of our goals. We did not
include a buzzer or LED as output sources, which would have been nice to do in tandem with
our substitute, the LCD. However, our final product delivers on every functionality goal we
made, taking both keypad and RFID input and correctly processing that input to determine if
access should be granted or not. We even developed a relatively realistic password setting and
resetting scheme, putting our product a step above a basic prototype.

References
Libraries and Documentation

- RFID: ​https://github.com/miguelbalboa/rfid
- EEPROM: ​https://www.arduino.cc/en/Reference/EEPROM
- SPI: ​https://www.arduino.cc/en/reference/SPI
- LCD: ​https://www.arduino.cc/en/Reference/LiquidCrystal
- Keypad: ​https://playground.arduino.cc/Code/Keypad/

https://github.com/miguelbalboa/rfid/wiki/%5BExample%5D-AccessControl-with-LCD
https://www.arduino.cc/en/Reference/EEPROM
https://www.arduino.cc/en/reference/SPI
https://www.arduino.cc/en/Reference/LiquidCrystal
https://playground.arduino.cc/Code/Keypad/

